首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3248篇
  免费   205篇
  国内免费   16篇
电工技术   61篇
综合类   6篇
化学工业   679篇
金属工艺   79篇
机械仪表   80篇
建筑科学   115篇
矿业工程   2篇
能源动力   208篇
轻工业   302篇
水利工程   37篇
石油天然气   78篇
无线电   423篇
一般工业技术   636篇
冶金工业   115篇
原子能技术   13篇
自动化技术   635篇
  2024年   5篇
  2023年   118篇
  2022年   175篇
  2021年   271篇
  2020年   182篇
  2019年   179篇
  2018年   223篇
  2017年   168篇
  2016年   176篇
  2015年   110篇
  2014年   138篇
  2013年   269篇
  2012年   177篇
  2011年   194篇
  2010年   136篇
  2009年   137篇
  2008年   102篇
  2007年   69篇
  2006年   77篇
  2005年   70篇
  2004年   51篇
  2003年   37篇
  2002年   38篇
  2001年   31篇
  2000年   25篇
  1999年   30篇
  1998年   35篇
  1997年   19篇
  1996年   19篇
  1995年   13篇
  1994年   17篇
  1993年   22篇
  1992年   19篇
  1991年   8篇
  1990年   8篇
  1989年   14篇
  1988年   15篇
  1987年   5篇
  1986年   10篇
  1985年   9篇
  1984年   6篇
  1983年   7篇
  1982年   6篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   8篇
  1977年   4篇
  1976年   7篇
  1974年   4篇
排序方式: 共有3469条查询结果,搜索用时 31 毫秒
81.
Engineering with Computers - The study is investigated the capacity of new artificial intelligence (AI) methodologies for shear strength (Vs) computation of reinforced concrete (RC) beams. The...  相似文献   
82.
Microsystem Technologies - The dynamic performance of a micro-resonator depends on its energy loss mechanism which is quantified by Q-factor (Quality factor). This paper presents numerical...  相似文献   
83.
Intrusion detection systems that have emerged in recent decades can identify a variety of malicious attacks that target networks by employing several detection approaches. However, the current approaches have challenges in detecting intrusions, which may affect the performance of the overall detection system as well as network performance. For the time being, one of the most important creative technological advancements that plays a significant role in the professional world today is blockchain technology. Blockchain technology moves in the direction of persistent revolution and change. It is a chain of blocks that covers information and maintains trust between individuals no matter how far apart they are. Recently, blockchain was integrated into intrusion detection systems to enhance their overall performance. Blockchain has also been adopted in healthcare, supply chain management, and the Internet of Things. Blockchain uses robust cryptography with private and public keys, and it has numerous properties that have leveraged security’s performance over peer-to-peer networks without the need for a third party. To explore and highlight the importance of integrating blockchain with intrusion detection systems, this paper provides a comprehensive background of intrusion detection systems and blockchain technology. Furthermore, a comprehensive review of emerging intrusion detection systems based on blockchain technology is presented. Finally, this paper suggests important future research directions and trending topics in intrusion detection systems based on blockchain technology.  相似文献   
84.
85.
Introduction: Oral phosphate binders are the main stay of treatment of hyperphosphatemia. Adherence rates to ferric citrate, a recently approved phosphate binder, are unknown. Methods: We conducted a post‐hoc analysis to evaluate whether adherence rates were different for ferric citrate vs. active control in 412 subjects with end stage kidney disease (ESKD) who were randomized to ferric citrate vs. active control (sevelamer carbonate and/or calcium acetate). Adherence was defined as percent of actual number of pills taken to total number of pills prescribed. Findings: There were no significant differences in baseline characteristics including gender, race/ethnicity, and age between the ferric citrate and active control groups. Baseline phosphorus, calcium, and parathyroid hormone levels were similar. Mean (SD) adherence was 81.4% (17.4) and 81.7% (15.9) in the ferric citrate and active control groups, respectively (P = 0.88). Adherence remained similar between both groups after adjusting for gender, race/ethnicity, age, cardiovascular disease (CVD), and diabetic nephropathy (mean [95% CI]: 81.4% [78.2, 84.6] and 81.5% [77.7, 85.2] for ferric citrate and active control, respectively). Gender, race/ethnicity, age, and diagnosis of diabetic nephropathy did not influence adherence to the prescribed phosphate binder. Subjects with CVD had lower adherence rates to phosphate binder; this was significant only in the active control group. Discussion: Adherence rates to the phosphate binder, ferric citrate, were similar to adherence rates to active control. Similar adherence rates to ferric citrate are notable since tolerance to active control was an entry criteria and the study was open label. Gender, race/ethnicity, nor age influenced adherence.  相似文献   
86.
Knowledge of materials' thermal‐transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon‐boundary‐scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap‐emission over excitation‐laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes' emission spectrally shift based on the material's thermal diffusivity and conductivity. This NM‐based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal‐transport properties. It is anticipated that this novel technique to enable an efficient single‐cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single‐cell thermal‐transport properties.  相似文献   
87.
88.
ZnO nanoparticles were synthesized by liquid-phase pulse laser ablation of a Zn foil target immersed in deionized water. Nanosecond Q-switched Nd:YAG laser pulses of 532 nm were applied to the Zn foil target at a perpendicular and inclined (θ = 45°) angles. X-ray diffraction analysis revealed that both cases feature a ZnO nanostructure with a hexagonal wurtzite structure and that the particle size increases with the inclined target angle. Field emission scanning electron microscopy results of a colloidal drop cast on a glass substrate showed the ZnO has a nanorod structure in the case of a perpendicular target angle and an interlaced tattered nanosheet structure in the case of an inclined target angle. Photoluminescence spectra showed emission peaks in the UV, violet, blue, and green spectral regions, which correspond to excitonic and various defects resulting in an enhancement of emissions at inclined target angle.  相似文献   
89.
Warm-Mix Asphalt (WMA) is a widely used product, which proved a contribution to the reduction in asphalt mixing and compaction temperatures. This reduction leads to lower fuel consumption and smoke emission in asphalt plants. Most of the characterisation of binders used in WMA has focused in the past on measuring linear viscoelastic properties and associated Superpave parameters. Several studies have shown that the average stresses and strains of the asphalt mixture remain mostly within the linear viscoelastic response. However, localised strains in the binder phase of the mixture could reach values high enough to induce nonlinear viscoelastic and viscoplastic deformations. Therefore, this study focuses on an experimental and analytical evaluation of linear, nonlinear viscoelastic and viscoplastic responses of selected binders modified for use in WMA. The first part of the paper analyses the linear viscoelastic material properties and their ability to evaluate permanent deformation resistance. Then, the non-recoverable creep compliance parameter obtained from the Multiple Stress Creep Recovery (MSCR) test is analysed to assess the nonlinear response and permanent deformation of asphalt binders. The paper utilises a nonlinear plasto-viscoelastic (NPVE) approach to assess and quantify the nonlinear plasto-viscoelastic response of binders by separating the recoverable and irrecoverable strains measured in the MSCR test. Two WMA additives were included in this study by mixing them with polymer-modified and unmodified asphalt binders. Analysis of results showed that the NPVE approach captured a higher percentage of recovery than the NLVE approach. However, binder’s performance evaluation and ranking did not change by adopting the NPVE approach. The nonlinear viscoelastic parameters provided insight on the behaviour of asphalt binders mixed with WMA additives during loading cycles. Sasobit showed higher influence than Advera on binders in resisting permanent deformation by increasing the recoverable strain during the unloading phase.  相似文献   
90.
There is a growing interest in the development of microelectronics that can perform reliably and robustly at temperatures above 300 °C. Such devices require stable thermal properties, low thermal drift, and thermal cycling resistance. Conventional hybrid circuit technology demonstrates high-temperature packages, but the high costs and lead time are significant drawbacks. In contrast, additive manufacturing processes, including aerosol jet printing (AJP), offer cost and time benefits, as well as 3D structures and embedded features. However, the properties and reliability of additive packaging materials at extreme temperatures are not well known. Herein, the reliability at temperatures up to 750 °C in terms of electrical performance and mechanical strength of aerosol jet printed gold thick films onto ceramic substrates are assessed. Thermal coefficient of resistance of printed gold films is measured. The electrical resistance stability and leakage current of printed gold structures are also characterized during over 100 h of aging at temperatures up to 750 °C. Finally, the mechanical adhesion strength of the printed gold films is evaluated after aging for 100 h at temperatures up to 750 °C. The adhesion of the printed gold to the ceramic substrates remains high after aging, very stable resistances and minimal leakage currents have been observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号